ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
G. W. Keilholtz, R. E. Moore, H. E. Robertson
Nuclear Technology | Volume 17 | Number 3 | March 1973 | Pages 234-246
Technical Paper | Material | doi.org/10.13182/NT73-A31267
Articles are hosted by Taylor and Francis Online.
The effects of fast neutrons on four commercial poly crystalline alumina products of high density were investigated. These materials have been considered for use as electrical insulators in nuclear-powered thermionic converters. Fast-neutron fluences up to 8.4 × 1021 n/cm2(>0.1 MeV) were achieved; irradiation temperatures ranged from 60 to 1230°C. Neutron damage was manifested by gross fracturing, volume increase, and separation at grain boundaries. There was very little damage at temperatures below 100°C, but it was much greater at temperatures from 570 to 1070°C (the temperature range for thermionic applications). At 1100°C and above, in-reactor thermal annealing was rapid enough to reduce damage effects significantly, but increased damage occurred to specimens irradiated at much higher temperatures (∼1230°). Based on the irradiation results, the following conclusions and recommendations were made for the use of poly crystalline alumina in thermionic converters: (a) the alumina should be of high purity to minimize gross fracturing, and it should be of small grain size to minimize the effects due to separation at grain boundaries; (b) the thermionic device should be designed for continuous operation because thermal cycling apparently promotes separation at grain boundaries; (c) the design should allow for an increase in volume of the alumina insulators of about 3%; and (d) alumina of high purity and small grain size can withstand fast-neutron fluences up to about 4.3 × 1021 n/cm2 in an ETR-type neutron spectrum and up to about 2.8 × 1021 n/cm2 in an EBR-II-type spectrum for those neutrons with energies >0.1 MeV.