ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Takashi Kiguchi, Hiroshi Motoda, Toshio Kawai
Nuclear Technology | Volume 17 | Number 2 | February 1973 | Pages 168-183
Technical Paper | Isotopes Separation | doi.org/10.13182/NT73-A31244
Articles are hosted by Taylor and Francis Online.
The parameters of a uranium-enriching cascade, i.e., the cut and the separation factor, are considered to be fluctuating stochastically. The covariance matrices of the total uranium flow and 235UF6 flow were derived by the classical stochastic theory for evaluating the effect of stochastic fluctuations of these parameters to steady-state plant performance. Also the stationary random process theory is applied to the kinetic equations of the cascade, and the autocorrelation function of the 235UF6 flow and enrichment is derived for evaluating the time behavior of the plant performance caused by random fluctuation of these system parameters. Numerical values illustrate the response of product flow and enrichment to the fluctuations, which are both time independent and dependent, of the cut and the separation gain of stages and centrifuges. These data lead to a conclusion concerning the tolerances of centrifuge parameters and stage controllers.