ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
R. J. Price
Nuclear Technology | Volume 16 | Number 3 | December 1972 | Pages 536-542
Technical Paper | Material | doi.org/10.13182/NT72-A31222
Articles are hosted by Taylor and Francis Online.
Hot-pressed α-silicon carbide temperature monitors were irradiated at 525 and 772°C to 4.8 × 1021 n/cm2 (E > 0.18 MeV). Postirradiation isochronal annealing was carried out for 1-h periods at either 25 or 50°C intervals between 300°C and 1200 to 1500°C. Above the irradiation temperature the sample length decreased linearly with annealing temperature, while the electrical resistivity increased exponentially with temperature. Straight lines were fitted through the length-versus-temperature and log (resistivity)-versus-temperature data points and the temperature, T1 at which the line intersected the as-irradiated base line was measured. For both length change and resistivity, mean values of T1 agreed with the measured irradiation temperature within experimental accuracy. The precision of a single determination of T1 was obtained from curve-fitting statistics and was about ±20°C for irradiation at 525°C and ±30 at 772°C (90% confidence limits) for both length and resistivity measurements. The sample-to-sample reproducibility of T1 was estimated from the standard deviation of four repeated measurements and was similar to the precision of a single determination.