ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today unveiled 10 companies racing to bring test reactors online by next year to meet Trump's deadline of next Independance Day, leveraging a new DOE pathway that allows reactor authorization outside national labs. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
T. J. Walker
Nuclear Technology | Volume 16 | Number 3 | December 1972 | Pages 509-520
Technical Paper | Material | doi.org/10.13182/NT72-A31219
Articles are hosted by Taylor and Francis Online.
The utilization of Zircaloy for pressurized-water, nuclear-power reactor core structure and cladding applications results in numerous design examples with either sharp edge defects or joints which approximate sharp cracks. For the characterization of fracture toughness, specimens were machined from an ingot of Zircaloy-4 which had been hot rolled to a 1-in. thickness and retained in the mill-annealed condition (i.e., hot rolled at 1550°F, reheated to 1550°F for 15 min after rolling, and air cooled). The basal pole fractions were fL = 0.073, fT = 0.415, and fN = 0.512. The testing for fracture characterization was conducted with IX WOL (wedge opening loading) and 0.4X CT (compact tensile) specimens. Orientation effects introduced by the preferential alignment of the basal planes during rolling have been determined by the subsized CT specimens. Also, the fracture surfaces were studied with a scanning electron microscope and evidence of large local ductility was observed for all specimens including those fractured at -150°F. Small hollow conical projections from the fracture surface are superimposed on larger similarly shaped projections. A model for fracture consistent with the scanning electron microscope (SEM) views is the formation of small isolated spheroidal holes, less than 10% of grain size, then growth and coalescence of the holes to form the larger conical projections of grain size or larger.