ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
S. J. Milioti, A. Sherman, R. L. Ritzman, J. A. Gieseke
Nuclear Technology | Volume 16 | Number 3 | December 1972 | Pages 497-508
Technical Paper | Reactor | doi.org/10.13182/NT72-A31218
Articles are hosted by Taylor and Francis Online.
A computerized mathematical model has been developed which treats the process of iodine removal from the atmosphere of a multivolume nuclear reactor containment by aqueous sprays under simulated accident conditions. The model is an extension of an earlier work and consists of a set of simultaneous linear first-order differential equations that are solved time incrementally. The rate coefficients are calculated internally and take into account the effects of spray solution chemistry, liquid phase mass transfer resistance, system temperature, spray drop coalescence, spray coverage, spray impingement on internal obstructions, and spray solution recirculation. Results of parameter variation studies with the model reveal that liquid phase mass transfer resistance effects are more important than spray loss mechanisms in controlling iodine removal rates. Comparison of computed predictions with results of experimental spray studies shows close agreement with respect to initial iodine removal rates.