ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today unveiled 10 companies racing to bring test reactors online by next year to meet Trump's deadline of next Independance Day, leveraging a new DOE pathway that allows reactor authorization outside national labs. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
S. J. Milioti, A. Sherman, R. L. Ritzman, J. A. Gieseke
Nuclear Technology | Volume 16 | Number 3 | December 1972 | Pages 497-508
Technical Paper | Reactor | doi.org/10.13182/NT72-A31218
Articles are hosted by Taylor and Francis Online.
A computerized mathematical model has been developed which treats the process of iodine removal from the atmosphere of a multivolume nuclear reactor containment by aqueous sprays under simulated accident conditions. The model is an extension of an earlier work and consists of a set of simultaneous linear first-order differential equations that are solved time incrementally. The rate coefficients are calculated internally and take into account the effects of spray solution chemistry, liquid phase mass transfer resistance, system temperature, spray drop coalescence, spray coverage, spray impingement on internal obstructions, and spray solution recirculation. Results of parameter variation studies with the model reveal that liquid phase mass transfer resistance effects are more important than spray loss mechanisms in controlling iodine removal rates. Comparison of computed predictions with results of experimental spray studies shows close agreement with respect to initial iodine removal rates.