ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Charles W. Forsberg
Nuclear Technology | Volume 131 | Number 3 | September 2000 | Pages 337-353
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT00-A3121
Articles are hosted by Taylor and Francis Online.
The use of depleted uranium dioxide (DUO2) particulates as fill material for repository waste packages (WPs) containing light-water reactor (LWR) spent nuclear fuel (SNF) was investigated. A repository WP would be loaded with SNF, and small DUO2 particulates (0.5 to 1.0 mm) would be added to fill the void space inside the WP - including the coolant channels inside SNF assemblies. The DUO2 fill slows release of radionuclides from the SNF by (a) creating a local chemically reducing environment that slows degradation of the SNF UO2 and (b) reducing groundwater flow through the WP. The depleted uranium (DU) fill minimizes the potential for long-term criticality in the repository by isotopic dilution of 233U and 235U. The potential for criticality is primarily determined by 235U (a) originally in the SNF and (b) from decay of 239Pu. The use of DU consumes excess DU from the production of enriched uranium. The mechanisms for improvements in repository performance with DUO2 fill are defined, but additional work is required to fully quantify the benefits and costs of such an approach.