ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Dean V. Power
Nuclear Technology | Volume 16 | Number 2 | November 1972 | Pages 437-443
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT72-A31209
Articles are hosted by Taylor and Francis Online.
The problem of predicting the seismic signals generated by the simultaneous detonation of a multiple array of underground explosions is considered. A method is proposed whereby the multiple explosion signal or signal parameters may be synthesized from the single explosion signal or signal parameters. This method utilizes the superposition principle of elastic theory and the wave properties of seismic signals to construct a “coherency transfer function” essential to the synthesizing process. Both intuition and experience indicate that signals from multiple explosives can interfere either constructively or destructively. This analytical method is shown to be a good mathematical model by accurately predicting amplitudes for both cases. The method is applied to the results of several single and row charge cratering events and the calculations are compared to measured results. It is shown that when applied to peak amplitudes of velocity, this prediction method gives good agreement with experimental results for both simultaneous and sequential detonations with relatively short time delays. The results indicate that the simultaneous detonation of five close-spaced explosives in the 100-kt yield range detonated in an isotropic medium can result in larger amplitudes of motion than the detonation of a single explosive of equivalent total yield.