ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. B. Green, Jr., R. M. Lessler
Nuclear Technology | Volume 16 | Number 2 | November 1972 | Pages 430-436
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT72-A31208
Articles are hosted by Taylor and Francis Online.
The industrial application of the Plowshare concept of current interest is the stimulation of natural gas. The degree of success of this and other applications may be significantly affected by the amount of tritium produced by the nuclear explosion. The reduction of residual tritium has been the subject of continuing research and evaluation. Both public safety and economics are considered in planning this reduction. Tritium is produced from two major sources: the explosive itself and the material and rock surrounding the explosive. The improved design of the low-residual-tritium Plowshare underground engineering explosive represents considerable progress in the reduction of the amount of tritium formed. This is shown by the decrease in the total tritium produced in the 29-kt Gasbuggy event from about 40 000 Ci to the estimated <1000 Ci per 30-kt explosive for the Rio Blanco event. Neutron shielding can reduce the amount of tritium formed external to the explosive. Various compositions of borated polyethylene and other neutron-absorbing and moderating materials were investigated. Polyethylene borated at 10 to 25 at.% appears to be best suited for use as an external shield with the Diamond family of explosives, depending upon the specific rock composition. It was found that, in addition to the shielding composition and the lithium content of the rock, the effective temperature of the rock at the time of neutron absorption is very important in determining the tritium production. As an example, the proportion of neutrons undergoing tritium-producing reactions in the Gasbuggy rock changes from to when the neutrons are absorbed at energies of 1 e V and 1 keV, respectively. A sample case was calculated in which it was found that a 2.5-cm-thick shield of borated polyethylene reduced the total amount of tritium formed in the shield and rock by a factor of 2 over the unshielded case. A 10-cm-thick shield reduced the total tritium formed by an order of magnitude.