ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
J. B. Green, Jr., R. M. Lessler
Nuclear Technology | Volume 16 | Number 2 | November 1972 | Pages 430-436
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT72-A31208
Articles are hosted by Taylor and Francis Online.
The industrial application of the Plowshare concept of current interest is the stimulation of natural gas. The degree of success of this and other applications may be significantly affected by the amount of tritium produced by the nuclear explosion. The reduction of residual tritium has been the subject of continuing research and evaluation. Both public safety and economics are considered in planning this reduction. Tritium is produced from two major sources: the explosive itself and the material and rock surrounding the explosive. The improved design of the low-residual-tritium Plowshare underground engineering explosive represents considerable progress in the reduction of the amount of tritium formed. This is shown by the decrease in the total tritium produced in the 29-kt Gasbuggy event from about 40 000 Ci to the estimated <1000 Ci per 30-kt explosive for the Rio Blanco event. Neutron shielding can reduce the amount of tritium formed external to the explosive. Various compositions of borated polyethylene and other neutron-absorbing and moderating materials were investigated. Polyethylene borated at 10 to 25 at.% appears to be best suited for use as an external shield with the Diamond family of explosives, depending upon the specific rock composition. It was found that, in addition to the shielding composition and the lithium content of the rock, the effective temperature of the rock at the time of neutron absorption is very important in determining the tritium production. As an example, the proportion of neutrons undergoing tritium-producing reactions in the Gasbuggy rock changes from to when the neutrons are absorbed at energies of 1 e V and 1 keV, respectively. A sample case was calculated in which it was found that a 2.5-cm-thick shield of borated polyethylene reduced the total amount of tritium formed in the shield and rock by a factor of 2 over the unshielded case. A 10-cm-thick shield reduced the total tritium formed by an order of magnitude.