ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Lee A. James
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 316-322
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31197
Articles are hosted by Taylor and Francis Online.
The fatigue-crack propagation behavior of 20% cold-worked Type 316 stainless steel was characterized over the temperature range 75 to 1300°F (24 to 704°C) using linear-elastic fracture mechanics. It was found that, at a given level of stress intensity factor, increasing the temperature produced a significant increase in the rate of fatigue-crack propagation. At 1000°F, decreasing the cyclic frequency tended to increase the crack growth rate. The data also suggest that, at a given temperature, the crack growth rate is slightly higher when the direction of crack extension is parallel to the rolling direction than when the crack extension is perpendicular to the rolling direction. Comparison with data for solution-annealed Type 316 fatigue-cycled under similar conditions indicates that, at a given temperature, cold working tends to increase the resistance to fatigue-crack propagation.