ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
C. R. Brinkman, G. E. Korth, R. R. Hobbins
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 297-307
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31195
Articles are hosted by Taylor and Francis Online.
Comparing data obtained from tests conducted on unirradiated Type 316 stainless steel in either the solution annealed or solution annealed and aged condition showed that aging was beneficial in improving both the fatigue and creep-fatigue properties at 593°C (1100°F). An indication was found that unirradiated Type 304 stainless steel would be more suitable for applications involving creep-fatigue interaction than unirradiated Type 316 stainless steel. Irradiation to fluences of 0.17 to 6.1 × 1021 n/cm2 E > 0.1 MeV (450°C), resulted in a pronounced effect on the creep-fatigue resistance of these materials when tested at a strain range of 1%. Both fatigue and creep damage values were calculated using actual times and cycles to failure and design times and cycles to failure. These damage values were summed linearly. Damage sums obtained were not found to be a unique value but dependent upon strain range, length of tensile hold time, and material condition. Comparisons between estimates of irradiated fatigue behavior and actual irradiated fatigue lifetimes were made using limited data available. Estimates made using irradiated tensile data were usually found to be conservative in predicting pure fatigue behavior.