ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
C. R. Brinkman, G. E. Korth, R. R. Hobbins
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 297-307
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31195
Articles are hosted by Taylor and Francis Online.
Comparing data obtained from tests conducted on unirradiated Type 316 stainless steel in either the solution annealed or solution annealed and aged condition showed that aging was beneficial in improving both the fatigue and creep-fatigue properties at 593°C (1100°F). An indication was found that unirradiated Type 304 stainless steel would be more suitable for applications involving creep-fatigue interaction than unirradiated Type 316 stainless steel. Irradiation to fluences of 0.17 to 6.1 × 1021 n/cm2 E > 0.1 MeV (450°C), resulted in a pronounced effect on the creep-fatigue resistance of these materials when tested at a strain range of 1%. Both fatigue and creep damage values were calculated using actual times and cycles to failure and design times and cycles to failure. These damage values were summed linearly. Damage sums obtained were not found to be a unique value but dependent upon strain range, length of tensile hold time, and material condition. Comparisons between estimates of irradiated fatigue behavior and actual irradiated fatigue lifetimes were made using limited data available. Estimates made using irradiated tensile data were usually found to be conservative in predicting pure fatigue behavior.