ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today unveiled 10 companies racing to bring test reactors online by next year to meet Trump's deadline of next Independance Day, leveraging a new DOE pathway that allows reactor authorization outside national labs. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
W. H. McCarthy, K. J. Perry, G. R. Hull, J. W. Bennett
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 171-186
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31184
Articles are hosted by Taylor and Francis Online.
Sixteen unencapsulated mixed-oxide fuel pins were irradiated in EBR-II to ∼5 at.% burnup at 16 kW/ft nominal peak linear power. The fuel fabrication parameters were varied within the ranges proposed for commercial liquid-metal fast breeder reactors (LMFBR) except that pin diameter was ∼15% larger than usually specified. No cladding failures occurred. Pin growth was substantially greater in Type 304L stainless-steel-clad fuel pins than in Type 316 clad elements. Fission gas release to the internal void volume ranged from 73 to 97%. Experimental burnup values were 10 to 12% less than calculated values and varied across the subassembly in a manner that indicated a significant fission rate elevation from an adjacent extra-worth driver subassembly. Substantial attack was found in the cladding at its inside surface and the extent of this attack (up to 0.009-in. intergranular penetration at about 1150°F) correlated with temperature but not with any fuel fabrication parameter. The penetrating fission product material contained Cs, Mo, and Te. The unusually large amount of fuel/fission product/cladding reaction may be related to the high carbon content in the mixed oxides and/or to a short high-temperature operating period.