ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Gerardo Martinez-Guridi, Pranab Samanta, Tsong-Lun Chu, Ji-Wu Yang
Nuclear Technology | Volume 131 | Number 3 | September 2000 | Pages 297-318
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3118
Articles are hosted by Taylor and Francis Online.
Following a loss-of-coolant accident (LOCA) in a nuclear power plant (NPP), the loss of electric-power generation, as might be precipitated by the unit tripping, may cause switchyard- and grid-instability with a subsequent loss-of-off-site power (LOOP). The LOOP usually is delayed by a few seconds or longer. This accident is called a LOCA with consequential LOOP, or a LOCA with delayed LOOP (abbreviated as LOCA/LOOP). NPPs are designed to cope with simultaneous LOCA and LOOP. The U.S. Nuclear Regulatory Commission (NRC) identified this issue as generic safety issue (GSI) 171, "Engineered Safety Feature Failure from a Loss-Of-Off-Site Power Subsequent to a Loss-of-Coolant Accident." NRC subsequently dropped GSI-171 and considers it resolved. We present the probabilistic risk analysis of the LOCA/LOOP scenario that was conducted as part of NRC's resolution of GSI-171. We analyze and quantify the core damage frequency (CDF) associated with this accident. Event/fault trees are developed covering the progression of the accident to core damage. We used engineering evaluations and judgments to estimate probabilities for the conditions identified in a LOCA/LOOP scenario and to obtain a bounding evaluation of the CDF. We show that the contribution of such an accident to CDF depends on electrical-load sequencing and shedding capabilities; plants with adequate capabilities incur a minimal additional contribution to risk. No single plant design is known to be vulnerable to all the conditions; only some of the conditions may apply to some plants.