ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
T. D. Gulden, C. L. Smith, D. P. Harmon, W. W. Hudritsch
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 100-109
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31179
Articles are hosted by Taylor and Francis Online.
The performance of TRISO-coated carbide fissile particles, of the type to be used in the large HTGR, correlates well with statistically based calculations of stresses in the SiC coating. Three coated particle batches, containing a total of nearly 104 individual coated particles, showed insignificant coating failure (≤0.2%) after exposure to essentially the most severe combined conditions of fast neutron exposure, burnup, and temperature to be experienced by fuel in a large HTGR. This high reliability derives from the fact that less than 1% of the particles in each batch had SiC tensile stresses greater than 30 000 psi, while the SiC layer in about 80% of the coated particles in each batch remained in compression throughout life. Two additional experimental batches of TRISO-coated carbide fissile particles had thinner coatings that resulted in higher mean SiC stresses in each batch and in probabilities of SiC coating stresses greater than 30 000 psi of 3.5 and 8.5%. This compares with the observed incidence of coating failure during irradiation to full design exposures of about 4% in both cases. These results provide further confirmation of the value of analytical stress models in interpreting the results of coated particle irradiation experiments, and emphasize the importance of a statistical approach to coated particle design.