ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
R. L. Simons, W. N. McElroy, L. D. Blackburn
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 14-24
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31171
Articles are hosted by Taylor and Francis Online.
Damage functions were determined for Type 304 stainless-steel mechanical property changes in yield strength and total elongation for an irradiation and test temperature of ∼480°C. The damage functions correlate the spectral effect of test reactor neutron induced changes in mechanical properties for subsequent use in predicting fluence limits for specified property level changes for reactor design studies. By propagating errors in the damage function analysis, a conservative lower bound fluence limit may be estimated. Results show that the yield strength damage function is nearly the same as the displacement cross section used as the first approximation to the damage function. The total elongation damage function shows a high energy, >4 MeV, and low energy, <10−3 MeV, enhancement of damage. Consequently, it is necessary to consider neutrons of all energies when correlating both fast and thermal test reactor data.