ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
K. G. Porges
Nuclear Technology | Volume 14 | Number 2 | May 1972 | Pages 194-196
Technical Note | Instrument | doi.org/10.13182/NT72-A31135
Articles are hosted by Taylor and Francis Online.
Certain reactor safety instrument channels require the assured detection of weak neutron bursts in the presence of strong gamma background. Inasmuch as the importance of some such channel justifies a fairly elaborate detection system, neutron multiplication suggests itself as a means of enhancing the signal strength relative to the background. While such a system may be technically feasible, it is subject to severe limitations inherent in the statistical nature of multiplication, which are explored in this Note. In particular, it is shown that, given a reasonably high intrinsic neutron detection efficiency, the statistical quality of detection is optimized for relatively weak multiplication factors and worsens again as multiplication increases. The overall design of a multiplying detection system is in fact a matter of considerable complexity since multiplication affects source geometry and energy distribution as well as statistics. A potential application is the detection of fuel failures in a liquid metal fast breeder reactor (LMFBR) plant by monitoring the coolant flow system for delayed neutrons downstream from the core.