ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
William S. Charlton, Robert T. Perry, Bryan L. Fearey, Theodore A. Parish
Nuclear Technology | Volume 131 | Number 2 | August 2000 | Pages 210-227
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT00-A3112
Articles are hosted by Taylor and Francis Online.
Techniques have been developed at Los Alamos National Laboratory for accurately calculating certain spent-fuel isotope concentration ratios for pressurized water reactor assemblies using a linked MCNP/ORIGEN2 code named Monteburns 3.01, without resorting to an assembly or full-core calculation. The effects of various fuel parameters such as the number of radial fuel regions per pin, burnup step size, reactor power, reactivity control mechanisms, and axial profiles have been studied. The significance of each factor was determined. A method was also proposed for calculating spent-fuel inventories as a function of burnup for a wide range of reactors and fuel types. It was determined that accurate calculations can be obtained using a three-dimensional, modified pin cell with seven radial fuel regions and two (flat-flux) axial fuel regions calculated with 2000 MWd/tonne U burnup steps for burnups ranging from 0 to 50 000 MWd/tonne U. The calculational technique was benchmarked to measured values from the Calvert Cliffs Unit 1 reactor, and good agreement from the point of view of calibrating a monitoring instrument was found for most cases.