ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
M. N. Özişik, M. D. Silverman
Nuclear Technology | Volume 14 | Number 3 | June 1972 | Pages 240-246
Technical Paper | Fuel | doi.org/10.13182/NT72-A31113
Articles are hosted by Taylor and Francis Online.
High temperature gas-cooled reactors (HTGRs) employ fuel elements which are separated from the coolant stream by graphite. Pressure differentials induced by turbulent flow along the coolant channel length of the fuel assembly can cause transverse flow of the gas through the graphite sleeve. Such transverse flow could transfer fission products from broken fuel particles into the main coolant stream. Mathematical analysis shows that the thickness of the annular gap between the fuel element and the graphite sleeve is an important factor that controls fission product transport by this mechanism. The data obtained from experiments performed in a high temperature, pressurized helium loop correlate satisfactorily with this analysis, and an estimate of cesium release to the coolant via this mechanism has been made for the Fort St. Vrain reactor.