ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
H. L. Beck, J. A. DeCampo, C. V. Gogolak, W. M. Lowder, J. E. McLaughlin, arid P. D. Raft
Nuclear Technology | Volume 14 | Number 3 | June 1972 | Pages 232-239
Technical Paper | Reactor Siting | doi.org/10.13182/NT72-A31112
Articles are hosted by Taylor and Francis Online.
Increases in radiation exposure of <1 mrad/yr due to gaseous effluents from a nuclear facility can be measured using sensitive high pressure ionization chambers. As a result of the rapidly fluctuating nature of the plume exposure rate contributions compared to the normal background signal, increases in exposure due to gaseous effluents can be uniquely distinguished from variations in ambient background. Passive devices such as thermoluminescent and film dosimeters are incapable of routinely measuring perturbations of this magnitude and, moreover, provide no mechanism for identifying the cause of an increase in integrated exposure. Collateral in situ gamma spectrometry has been used to verify the natural exposure rate levels, to identify the isotopes in the gaseous effluent, to estimate off-gas holdup times, and to investigate the exposure from 16N in the steam turbines of a boiling water reactor (BWR) plant.