ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
G. R. Handley
Nuclear Technology | Volume 14 | Number 1 | April 1972 | Pages 71-75
Technical Paper | Session on Physics of Nuclear Materials Safeguards / Fuel | doi.org/10.13182/NT72-A31100
Articles are hosted by Taylor and Francis Online.
The criticality safety of water-sprinkled arrays of enriched uranium metal on 20-in. center-to-center spacing was investigated using KENO, a multigroup Monte Carlo criticality calculation program. The effects of array size and unit apparent density on the optimum-density interspersed water moderation were analyzed. It was shown that larger arrays of enriched uranium require a lower density of interspersed hydrogenous moderator for optimum moderation than do similar smaller arrays. Also, it was shown that when the density of dry uranium metal units is decreased from full density without changing the mass or the center-to-center spacing of the units, while maintaining optimum interspersed hydrogenous moderation, the neutron multiplication of the array at first decreases, then increases beyond that of the array of full density units. The initial decrease of the neutron multiplication of the array may not be true in general for all arrays.