ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Arthur A. Bauer
Nuclear Technology | Volume 14 | Number 1 | April 1972 | Pages 65-70
Technical Paper | Session on Physics of Nuclear Materials Safeguards / Fuel | doi.org/10.13182/NT72-A31099
Articles are hosted by Taylor and Francis Online.
A fuel-specimen model is developed to describe the diametral swelling behavior of W-Re clad, oxide fuel specimens irradiated at a clad surface temperature in excess of 1200°C. The model is based on experimental observations at elevated fuel temperatures that fission-gas bubbles form to expand the fuel but that bubble and lenticular void movement, as a result of vaporphase transport, provide a mechanism for redensifying the fuel so that swelling is a continuous steady-state process. Good agreement with experimentally measured diametral changes is obtained by application of the model.