ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. Stegemann
Nuclear Technology | Volume 14 | Number 1 | April 1972 | Pages 59-64
Technical Paper | Session on Physics of Nuclear Materials Safeguards / Reactor | doi.org/10.13182/NT72-A31098
Articles are hosted by Taylor and Francis Online.
Monoenergetic neutron bursts in heavy moderators are being examined for application to the nondestructive assay of fissile material in fuel samples. The goal of these assays is the determination of fissile isotope content, generally in the presence of other fissile or fertile isotopes. The technique utilizes the relationship between neutron energy and the slowing down time, or time elapsed after the burst in the heavy moderator. The slowing down time spectrometer, a lead cube into which 14-Me V neutrons are pulsed, is used to determine the fissile isotope content. Differences in fission cross sections at specific energies are used to discriminate between fissile isotopes in the same sample.