ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Prodyot Roy, Lawrence E. Pohl
Nuclear Technology | Volume 13 | Number 3 | March 1972 | Pages 284-288
Technical Paper | Material | doi.org/10.13182/NT72-A31083
Articles are hosted by Taylor and Francis Online.
High efficiency cold traps are desirable to reduce reactor sodium impurities to their lowest practical levels to minimize materials degradation and prevent system flow blockages from occurring. The trap efficiency can be improved by increasing the coefficient of mass transfer in the crystallizer zone, through increasing the turbulence in that region. A highly effective method of accomplishing this, utilizing electromagnetic stirring, was employed in sodium mass transfer studies at General Electric Company under AEC sponsorship. The effect of increasing cold trap turbulence, to achieve calculated Reynolds numbers up to 105, was tested in a loop by measuring hydrogen and oxygen removal rates with the cold trap operated in both turbulent and laminar modes. The results show that electromagnetic stirring increased the conventional cold trap efficiency from ∼51% to ∼99%. Use of this concept permits faster system impurity cleanup with smaller equipment than was possible heretofore.