ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Harold E. Clark, Grover Tuck
Nuclear Technology | Volume 13 | Number 3 | March 1972 | Pages 257-263
Technical Paper | Chemical Processing | doi.org/10.13182/NT72-A31080
Articles are hosted by Taylor and Francis Online.
An empirical formula has been developed for the criticality specialist who does not have readily available a computer that calculates the individual cylinder diameter for a critical uranyl nitrate solution slab-cylinder system. The formula is used to calculate the criticality condition for an accidental leak in an array of fissile-containing vessels which forms a solution slab under the array. The critical system consisted of a square array of 1, 4, 9, or 16 vertical, equal-diameter cylinders resting on and interacting with a horizontal slab. Both the array and the slab were filled with ∼495 g U/liter uranyl nitrate solution with the uranium enriched to 93.2 wt% 235U. The empirical formula, which predicts the critical unit cylinder diameter of the slab-array system, is where Da is the critical unit cylinder diameter of the array alone at 500 g U/ liter. The independent variables are the number of cylinders, N; the edge-to-edge spacing between nearest neighbored cylinders in cm, S; the array solution height in cm, H; the solution concentration in g U/liter, C; and the solution slab thickness in cm, T. The calculated unit cylinder diameter, Ds, in cm, is within ±11% of the experimentally measured diameter for 65 critical slab-array systems. This accuracy is sufficient for calculating the accident condition for nuclear safety purposes. Monte Carlo calculations were performed on some typical experimental configurations. The average keff ranges from 0.977 ± 0.017 to 0.996 ± 0.012. By increasing the slab thickness by the experimental error, the low keff was increased to 0.998 ± 0.012.