ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
J. P. McBride, K. H. McCorkle, Jr., W. L. Pattison, B. C. Finney
Nuclear Technology | Volume 13 | Number 2 | February 1972 | Pages 148-158
Technical Paper | Chemical Processing | doi.org/10.13182/NT72-A31049
Articles are hosted by Taylor and Francis Online.
Urania sol is used for preparing uranium oxide microspheres for nuclear reactor fuels. A new process for producing concentrated, 1 M U or more, crystalline urania sols by solvent extraction has been developed. This process is based on a time-temperature conductivity-controlled extraction of nitric acid from a hydrolyzing U(IV) nitrate-formate solution using an amine-in-hydrocarbon extractant. The sols contain predominantly crystalline urania, and are more resistant to rapid, spontaneous gelation and other variations in properties than earlier sols made by solvent extraction. Also, earlier solvent extraction processes produced dilute (0.2-0.3 M U) sols that required concentration to 1 M before making the spheres. The preparation of a satisfactory sol depends on ensuring crystallization of the urania, minimizing uranium oxidation, and having a stable U(IV) nitrate-formate feed solution. Feed solutions were made by reducing uranyl nitrate-formate solution with platinum-catalyzed hydrogen at atmospheric pressure. The reduction requires vigorous agitation of the solution and continuous electrometric monitoring of the U(IV)/U(VI) redox potential to minimize harmful side reactions. The studies include both laboratory development and an engineering-scale demonstration.