ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
C. R. Adkins
Nuclear Technology | Volume 13 | Number 2 | February 1972 | Pages 114-130
Technical Paper | Reactor | doi.org/10.13182/NT72-A31047
Articles are hosted by Taylor and Francis Online.
The standard definition of the breeding ratio is subject to some suspicion, since in many cases of practical interest it gives an incorrect measure of the fissile fuel doubling time and erroneous trends of the fuel cycle reactivity variation. The reasons for this behavior are given in this study, along with methods for removing the difficulties. In addition to the standard definition, the method of η weighting due to Ott and the method of reactivity weighting due to Baker and Ross (British definition) are examined. It is shown that the η weighting procedure is not much better than the standard definition, whereas the British definition can be used to give very good results for the doubling time and fuel cycle reactivity variation. The standard for comparison is a detailed explicit fuel cycle analysis of both the startup cycle and equilibrium cycle of an oxide fast reactor. With the methods given it is shown that the important quantities needed from a single fuel cycle analysis can be obtained just from a statics calculation, for the known composition at the beginning of the fuel cycle of interest (e.g., first fuel cycle). This result has significant importance for conceptual design studies and for optimization studies where many reactor calculations must be performed, precluding the use of an explicit fuel cycle depletion analysis. However, it is also shown that the equilibrium fuel cycle performance cannot be adequately predicted solely from start-of-life statics analysis. An approximate procedure is formulated to predict the equilibrium reactor composition, from which the equilibrium breeding gain, doubling time, and reactivity variation may be determined. The impetus for this approach is the need for an extremely rapid computational technique in optimization studies based on the equilibrium fuel cycle performance.