ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. R. Vissers, J. T. Holmes, P. A. Nelson, L. G. Bartholme
Nuclear Technology | Volume 12 | Number 2 | October 1971 | Pages 218-225
Technical Paper | Instrument | doi.org/10.13182/NT71-A31029
Articles are hosted by Taylor and Francis Online.
A monitoring system has been developed for detecting leaks in LMFBR steam generators by the detection of the hydrogen produced in the sodium-water reaction. The principal capabilities of this detection system are rapid response, high sensitivity, and high stability and reliability. The monitoring system is based on the detection of a change in hydrogen concentration in sodium by measurement of the change in the rate of hydrogen diffusion through a nickel membrane immersed in the sodium. A vacuum is drawn on the membrane by an ion pump, and the partial pressure of hydrogen on the vacuum side, a measure of the hydrogen flux and the hydrogen activity in the sodium, is determined by the measurement of the current to the ion pump. The response time of the monitor depends chiefly on the hydrogen-diffusion properties of the nickel membrane. Transient-diffusion calculations indicate that 10 sec after a sudden change in the hydrogen concentration in the sodium, the change in the hydrogen flux from the membrane would be 70% of the eventual total change in flux for a 10-mil-thick nickel membrane at 500°C. With a stable high-voltage power supply, the noise on the recorded ion pump signal was <0.2% of the signal output for a hydrogen concentration in sodium of 0.1 to 1.0 ppm. This level of sensitivity and stability are adequate to detect a water leak from the steam generator into the LMFBR secondary sodium of 10−4 lb/sec at a sodium flow of 107 Ib/h in <1 min, if the hydrogen concentration in the secondary sodium is ∼0.1 ppm.