ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Zhendong Liu, Raymond S. Dickson, Lawrence W. Dickson, Zoran Bilanovic, David S. Cox
Nuclear Technology | Volume 131 | Number 1 | July 2000 | Pages 22-35
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3102
Articles are hosted by Taylor and Francis Online.
A direct-electric-heating (DEH) apparatus was developed to heat Zircaloy-sheathed irradiated fuel samples. The apparatus was used in the temperature gradient 1 (TG1) experiment to measure fission product releases from Zircaloy-sheathed irradiated Canada deuterium uranium (CANDU) UO2 fuel samples during fast temperature ramps in the presence of a radial temperature gradient in the fuel. The ohmic heating of the UO2, combined with surface heat removal by the surrounding helium coolant flow, produced a radial temperature profile that approximates the profile for fission- or decay-heated fuel.The 11 tests conducted in the TG1 experiment simulated various transient heating rates and high-temperature annealing conditions. The results indicate that the DEH technique can produce large radial temperature gradients and rapid heating rates. Ceramographic examinations showed columnar grain growth and evidence of UO2 melting. Chemical interactions between the tungsten electrodes and the UO2 were also observed. Releases of krypton, and release and redistribution of cesium were measured. Fission product release and redistribution results from some of the tests are also reported.The Kr measurements indicated that the amount of Kr released was highly dependent upon the peak dwell power: The higher the dwell power, the higher the cumulative release. The redistribution of cesium was mapped using emission gamma radiography of the fuel specimen after the test. Cesium was released from the center of the fuel sample where temperatures were the highest. A well-defined area was confirmed near the center where the Cs activity was depleted. The measured Kr releases were in good agreement with the Cs migration and release.