ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
F. Servais, P. Goldschmidt
Nuclear Technology | Volume 12 | Number 3 | November 1971 | Pages 290-297
Technical Paper | Fuel Cycle | doi.org/10.13182/NT71-A31009
Articles are hosted by Taylor and Francis Online.
A stochastic model is described which enables quantitative assessment of the efficiency of safeguards operations in reprocessing or fabrication plants. The a priori assumption, or “zero-hypothesis” is that there has been no diversion of fissile material, the inspector’s task being to invalidate it. To detect diversion, the inspector can resort to three criteria: The first criterion sets an upper bound M for the total mass uncertainty. When the latter reaches M, the inspector will take a plant-wide inventory. The second criterion enables the inspector to decide whether or not an estimated mass balance is compatible with the agreed model, and the third criterion connects the mass uncertainty to the time it lasts; moreover, it settles the number of strategic points within the plant. As an application of the mathematical model developed, systematic cheating strategies are studied. Under the rules assumed, a diverter will achieve maximum total withdrawal at minimum probability of being caught by following a strategy of erratic withdrawal and occasional reinsertion. This renders it necessary for the inspector to assess an upper limit to the positive mass balance, a quite unexpected result.