ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Robert Conn, Lawrence T. Papay
Nuclear Technology | Volume 12 | Number 3 | November 1971 | Pages 269-275
Technical Paper | Reactor | doi.org/10.13182/NT71-A31006
Articles are hosted by Taylor and Francis Online.
The use of reactor waste heat to prevent the formation of advection fogs, particularly those off the coast of southern California, is investigated. It is found that the formation of these fogs can be inhibited by heating the surface of a cold band of offshore water which acts as a catalyst in the sequence of steps leading to fog formation. The surface water of the cold band (colder than the surrounding waters by 1 to 4°F) can be heated with reactor waste heat to raise its temperature to that of the surrounding waters. An estimate is given of the number of installed electrical megawatts required to produce the heat necessary to raise the temperature of the cold tongue a specified amount. The parameters of the cold tongue are based on available sea surface isotherms. The use of reactor waste heat to reduce the intensity (thereby improving visibility) in an existing advection fog is also examined. A mathematical model of advection fog, originally developed by Rodhe and used by Mc Vehil, is employed. It is found that a strongly nonlinear gain in visibility is achieved as the sea surface temperature (temperature at the fog base) is raised. A discussion is included of future studies required to investigate in more detail the feasibility of the ideas presented.