ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Robert Conn, Lawrence T. Papay
Nuclear Technology | Volume 12 | Number 3 | November 1971 | Pages 269-275
Technical Paper | Reactor | doi.org/10.13182/NT71-A31006
Articles are hosted by Taylor and Francis Online.
The use of reactor waste heat to prevent the formation of advection fogs, particularly those off the coast of southern California, is investigated. It is found that the formation of these fogs can be inhibited by heating the surface of a cold band of offshore water which acts as a catalyst in the sequence of steps leading to fog formation. The surface water of the cold band (colder than the surrounding waters by 1 to 4°F) can be heated with reactor waste heat to raise its temperature to that of the surrounding waters. An estimate is given of the number of installed electrical megawatts required to produce the heat necessary to raise the temperature of the cold tongue a specified amount. The parameters of the cold tongue are based on available sea surface isotherms. The use of reactor waste heat to reduce the intensity (thereby improving visibility) in an existing advection fog is also examined. A mathematical model of advection fog, originally developed by Rodhe and used by Mc Vehil, is employed. It is found that a strongly nonlinear gain in visibility is achieved as the sea surface temperature (temperature at the fog base) is raised. A discussion is included of future studies required to investigate in more detail the feasibility of the ideas presented.