ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
L. A. Lawrence, J. A. Christensen
Nuclear Technology | Volume 12 | Number 4 | December 1971 | Pages 367-374
Technical Paper | Fuel | doi.org/10.13182/NT71-A30986
Articles are hosted by Taylor and Francis Online.
For UO2-25 wt% PuO2, the quantity kdT was established at 49 ± 5 W/cm, where Ts = 700°C, k is the fuel thermal conductivity, and Ts and Tm refer to fuel surface and melt temperatures, respectively. This result is obtained from measurements on six individual fuel pins. Each pin was surrounded by a calorimeter consisting of a heavy-walled aluminum sleeve with thermocouples at two radial positions. Heat generation rates measured calorimetrically were supplemented by postirradiation bumup analyses for 140 Ba, 141 Ce, and 95Zr. Fuel pins were irradiated for 10 h at steady-state peak heat ratings after which they were rapidly quenched to preserve structures representative of peak power operation. Fractional fuel melting was correlated with heat rating and the correlation extrapolated to zero melting to yield melting heat rating. Flux depression corrections are required to apply these measurements, which were made in a thermal flux, to fast flux environments. These were obtained by measuring radial burnup profiles in several irradiated cross sections and numerically integrating the results.