ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
R. L. French, L. G. Mooney
Nuclear Technology | Volume 10 | Number 3 | March 1971 | Pages 348-365
Technical Paper | Radiation | doi.org/10.13182/NT71-A30969
Articles are hosted by Taylor and Francis Online.
Techniques were developed for applying the results of Straker’s recent discrete ordinates calculations of neutron transport in an air-over-ground geometry to predict the neutron -radiation environment produced by the detonation of nuclear weapons. Straker’s results include the spatial, energy, and angle distributions of neutrons at the air-ground interface from source neutrons in each of nine source-energy bands emitted from a point isotropic source 50 ft above the ground. The source-energy bands cover the range from 0.0033 to 15.0 MeV. The energy spectrum of the leakage neutrons from a particular weapon may be integrated over corresponding energy bands toob-tain source intensities which are then multiplied by the transport data for corresponding bands and summed over source energy. The results thus obtained are for Straker’s original air density of 1.1 x 10-3 g/cm3, but they may be sealed to other air densities by use of mass equivalent ranges. A satisfactory adjustment to source heights other than the 50-ft height used in the original calculations may be made with the “first-last collision method” if the source-detector separation is as much as 2 or 3 mean-free-paths (∼1000 ft). When folded with leakage spectra for numerous test devices and adjusted to the proper air density and burst height, Straker’s data give neutron-dose spatial distributions generally within 25% of those measured infield tests.