ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Charles Kelber
Nuclear Technology | Volume 10 | Number 1 | January 1971 | Pages 85-90
Technical Paper and Note | Technique | doi.org/10.13182/NT71-A30951
Articles are hosted by Taylor and Francis Online.
One of the methods considered for fuel assay in a nuclear safeguards program is analysis of reactivity response. For uranium-plutonium LMFBR fuels, such an assay is complicated by the similar response of the various fissile isotopes and the relatively large fast fission contribution from the fertile isotopes. The proposal is explored here to separate the responses, thereby promoting more accurate analysis, through design of an assay reactor which would be critical in two distinct modes having different spectra (hard and soft). The constraint is that the change in spectrum be obtained with little mechanical change in the system so as to avoid excessive reactivity renormalization. The solution examined here is a concept of a dilute fast spectrum fast reactor (zero-power) which is also critical when flooded with borated water. The response matrix is computed and the errors analyzed; problems in securing greater accuracy arise from the need to attain very low powers to measure spontaneous fission sources in the presence of fission product gammas, and the need for a better low-energy neutron filter than cadmium.