ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Jan S. Woyski
Nuclear Technology | Volume 10 | Number 1 | January 1971 | Pages 11-16
Technical Paper and Note | Reactor | doi.org/10.13182/NT71-A30942
Articles are hosted by Taylor and Francis Online.
An evaluation of fission product heat effect is required to protecta nuclear reactor from overheating after shutdown or to make proper use of the available decay heat. It may, therefore, prove convenient and practical to have the fission product heating included continuously in the reactor dynamics model like the delayed neutrons, following any changes in the reactor power level. This would be particularly useful in a multiple start-stop operation. In the method presented here, a modified Way-Wigner formulation is used to introduce the fission product decay heat in the reactor heat balance equation, following continuously any changes in operating conditions. A reference graph has been prepared showing computed and normalized fission product power decay after different operating times, with the decay curves arranged in time sequence. Their starting points show the fission product power buildup during reactor operation. Following the delayed-neutron pattern, several decay groups are used to make the equations fit the graph. The number of decay groups and the amount of detail in the reference graph depend on the desired accuracy. In the results of an analog simulation study, shown here, satisfactory agreement was reached between the analog plot and the reference decay and buildup curves. The method can be applied to any reactor type and nuclear fission process when a desired dynamics model as well as fission product decay data are available. In addition, xenon poisoning equations are shown adapted to the normalized reactor model.