ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. R. Waltz, J. F. Walter
Nuclear Technology | Volume 10 | Number 2 | February 1971 | Pages 160-167
Technical Paper and Note | Reactor | doi.org/10.13182/NT71-A30923
Articles are hosted by Taylor and Francis Online.
Comparisons of calculation and experiment have been performed to test the adequacy of fewgroup subcritical diffusion theory in predicting neutron detector response induced from material changes in a subcritical water-moderated reactor. In many operations involving material changes in a subcritical reactor, it is desired to monitor changes in the multiplication factor (Keff) of the system to ensure the safety of an operation by avoiding an accidental close approach to criticality. This monitoring procedure is accomplished by the introduction of artificial neutron sources to the system and by the proper interpretation of changes in neutron detector readings in terms of Keff. Because of the rather complicated involvement of the source-core-detector system, proper interpretation of detector response observed during these operations can only be achieved by the availability to predict detector response obtained from an accurate calculational model. Comparisons of calculation to experiment show that diffusion theory may be used successfully for these purposes; however, certain limitations of the model must be recognized and avoided. The breakdown of the calculational model in certain cases can be related ultimately to the inability of few-group diffusion theory to predict the absolute magnitude of detector flux for large distances through a water (or metal-water) shield. This inability can result in inaccuracies in predicted count rate response when applied to a specific source-core-detector arrangement with the characteristic that a given material change results in gross changes in the axial flux distribution. These effects can be overcome by the suitable positioning of the neutron source and detector relative to the subcritical assembly.