ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Tetsuo Sawada, Hisashi Ninokata, Hirofumi Tomozoe, Hiroshi Endo
Nuclear Technology | Volume 130 | Number 3 | June 2000 | Pages 242-251
Technical Paper | Fission Reactors | doi.org/10.13182/NT130-242
Articles are hosted by Taylor and Francis Online.
An outline is given of simple evaluation models for a recriticality in an attempt to construct a fast reactor core that has high potential to terminate an accident and prevent its progression, under postulated core-damage conditions, into further disruption of the degraded core and into possible recriticality leading to an energetic power excursion. The basic idea to prevent recriticality events is to remove a certain amount of fuel material out of the core in order to keep the core subcritical. Based on the simplified models, general guidelines are given that minimize the amount of fuel removal necessary to avoid recriticality events. Multigroup two-dimensional diffusion calculations are also performed to ascertain the tendency obtained by the simple model for the reactivity insertion due to a core collapse. In the sense of controlled material relocation, the fraction of core materials is identified that should be preferentially removed out of the core to eliminate the recriticality potential.