ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Harry J. Reilly, Lawrence E. Peters, Jr.
Nuclear Technology | Volume 11 | Number 1 | May 1971 | Pages 89-95
Technical Paper | Shielding | doi.org/10.13182/NT71-A30905
Articles are hosted by Taylor and Francis Online.
A calorimeter was made to determine the relative amount of gamma heating in watts per gram in different materials as a function of thickness and atomic number. The experiment was performed in the NASA Plum Brook Mockup Reactor, which has a typical light-water test reactor gamma-source spectrum. Carbon, aluminum, zirconium, tin, and lead specimens in slab geometry were irradiated. The results showed no significant difference in the gamma heating in carbon and aluminum, but the heating in the other materials was greater than that in aluminum and carbon. The smaller thicknesses had the greater heating. The calorimeter was also used to determine the gamma-heating effect in an irradiation experiment mockup having cylindrical geometry. The result showed good agreement with an expected value obtained from the slab geometry data. A theoretical analysis of the relative gamma heating was made using a one-dimensional multigroup transport program. It was concluded that the analysis and measurements agreed qualitatively and that quantitative differences were attributable mostly to geometrical effects. The results of this study are believed to be applicable to both nuclear reactor experiment designs and other reactor problems.