ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Pekka Jauho, Risto Tarjanne
Nuclear Technology | Volume 11 | Number 1 | May 1971 | Pages 19-28
Technical Paper | Reactor | doi.org/10.13182/NT71-A30898
Articles are hosted by Taylor and Francis Online.
A calculation method developed for mixed-fuel lattices, consisting mainly of natural uranium rods and a small number of enriched rods isolated from each other, is studied with the aid of pulsed -neutron and exponential experiments. The experiments and theory are compared by means of the asymptotic spatial and time decay constants. In the theoretical calculations the natural uranium lattice is homogenized and the multigroup diffusion theory is applied; the enriched rods are described heterogeneously by using the monopole approximation. A separate transport theoretical cell calculation is carried out for the monopole boundary condition to obtain the relationship between the neutron current and flux at the surface of the lattice cell corresponding to an enriched rod. The results show that this kind of treatment is valid, although the cell calculation, where the axial flux dependence is disregarded, causes an error in the exponential experiments that is opposite to and greater than that in the pulsed-neutron experiments.