ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
J. J. Ritts, M. Solomito, P. N. Stevens
Nuclear Technology | Volume 11 | Number 2 | June 1971 | Pages 246-258
Technical Paper | Radiation | doi.org/10.13182/NT71-A30889
Articles are hosted by Taylor and Francis Online.
Improved multicollision neutron fluence-to-dose conversion factors have been calculated for a phantom exposed to neutrons with energies from 15 MeV down to thermal. The phantom was a 30-cm-thick slab composed of the 11 most common elements in the standard man. The calculations consisted of the simultaneous solution of the neutron and secondary gamma-ray transport problem with the ANISN computer code for both a beam source and an isotropic flux source, and for a slab having both infinite and finite transverse dimensions. The fluence-to-dose conversion factors were based on new neutron fluence-to-kerma factors and improved secondary gamma-ray yields determined for the individual elements comprising the slab. The neutron and gamma-ray cross sections used in the calculations are from the ENDF/B file and the OGRE library, respectively.