ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
J. J. Ritts, M. Solomito, P. N. Stevens
Nuclear Technology | Volume 11 | Number 2 | June 1971 | Pages 246-258
Technical Paper | Radiation | doi.org/10.13182/NT71-A30889
Articles are hosted by Taylor and Francis Online.
Improved multicollision neutron fluence-to-dose conversion factors have been calculated for a phantom exposed to neutrons with energies from 15 MeV down to thermal. The phantom was a 30-cm-thick slab composed of the 11 most common elements in the standard man. The calculations consisted of the simultaneous solution of the neutron and secondary gamma-ray transport problem with the ANISN computer code for both a beam source and an isotropic flux source, and for a slab having both infinite and finite transverse dimensions. The fluence-to-dose conversion factors were based on new neutron fluence-to-kerma factors and improved secondary gamma-ray yields determined for the individual elements comprising the slab. The neutron and gamma-ray cross sections used in the calculations are from the ENDF/B file and the OGRE library, respectively.