ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Florence L. Harrison
Nuclear Technology | Volume 11 | Number 3 | July 1971 | Pages 444-458
Technical Paper | Nuclear Explosion Engineering / Nuclear Explosive | doi.org/10.13182/NT71-A30877
Articles are hosted by Taylor and Francis Online.
Properties of nuclear debris that affect its distribution and concentration in water systems and the biological availability of radionuclides to edible aquatic organisms were assessed for debris from nuclear cratering events. From particle size distribution, it was calculated that longdistance transport of debris can occur in dynamic water systems. Leachability of debris was found to vary with the radionuclide and with the composition of the leaching solution, and to depend on particle size and distribution of activity in the particle. Biological availability was studied in aquaria or large pool systems where radionuclide concentrations were followed in water, suspended material, and aquatic organisms. Bivalve molluscs and crustaceans usually had higher radionuclide concentrations than fish. The availability of some radionuclides was less than that observed in experiments with pure, commercially obtained radionuclides and may be due to differences in physical and chemical form. Estimates of the whole-body dose to man from consumption of the aquatic organisms indicate that 131I, 140Ba/140La, 110mAg, and 181W are potential major contributors.