ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Fernando Paz-Castillo, Paul Kruger
Nuclear Technology | Volume 11 | Number 3 | July 1971 | Pages 345-356
Technical Paper | Nuclear Explosion Engineering / Nuclear Explosive | doi.org/10.13182/NT71-A30868
Articles are hosted by Taylor and Francis Online.
Steam stimulation is an efficient means of increasing recovery of petroleum from high-viscosity tar-sands deposits. Large amounts of steam are required with costs averaging about 50¢ per barrel. The economic development of many deposits depends on the availability of low cost steam. Geothermal heat has been considered as a source for producing steam. The feasibility of using a nuclear explosion in a geologic formation with normal temperature gradient for steam production near tar-sands deposits has been explored. A rubble chimney can be created at a depth of burial such that the temperature difference between the formation and the tar sands would be sufficient to reduce the viscosity of the oil for commercial recovery. Calculations indicate that a large tar-sands deposit in Venezuela could be steam stimulated to produce about 18 million barrels of oil. A 1 Mt nuclear explosion at a depth of burial of 3340 m might allow steam extraction of more than 1012 Btu at an estimated cost of <50¢ per barrel of steam produced.