ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
R. D. Baybarz, J. B. Knauer, J. R. Peterson
Nuclear Technology | Volume 11 | Number 4 | August 1971 | Pages 609-615
Technical Paper | Symposium on Fuel Rod Failure and Its Effect / Technique | doi.org/10.13182/NT71-A30858
Articles are hosted by Taylor and Francis Online.
New 252Cf encapsulation techniques have been developed which offer possibilities of variation in source strength and geometry. These techniques involve the concentration of 252Cf by extraction into an organic phase, followed by calcination to the oxide, and either fusion into a silica sphere or compression into an aluminum container. To date, sources containing from 8 to 100 µg of 252Cf have been prepared by fusion of the oxide into silica spheres about 1.6 mm in diameter. Sources containing up to 5 mg of 252Cf have been prepared by compression of mixed californium and aluminum oxides in aluminum powder to form aluminum cylinders 9.5 mm high and 6.5 mm in diameter. These new techniques make a significant contribution toward the technology necessary for the fabrication of 252Cf neutron sources, which are finding useful applications in many fields, including cancer therapy, mineral exploration, oil-well logging, on-site production of short-lived isotopes, and on-line analysis of flowing process streams.