ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Richard G. Bock, John D. Duncan, James E. Leonard
Nuclear Technology | Volume 11 | Number 4 | August 1971 | Pages 532-543
Technical Paper | Symposium on Fuel Rod Failure and Its Effect / Fuel | doi.org/10.13182/NT71-A30850
Articles are hosted by Taylor and Francis Online.
The first full-length, electrically heated, 49-rod, Zircaloy-clad simulated BWR fuel bundle with internally pressurized rods was spray cooled under loss-of-coolant conditions. The heater rods were internally pressurized with argon to simulate fission product gas inventory. Many perforations and severe rod distortions occurred near the center of the bundle. Nevertheless, spray cooling, initiated at a maximum cladding temperature of 1920°F, was effective in limiting cladding temperatures to ≈2250°F. Electrical failure of 10 heater rods complicated interpretation of the results, and it is estimated that the maximum temperature would have been ≈2360°F had the failures not occurred. The maximum coolant flow area reduction around a single rod caused by local perforations was 50%. However, this flow area reduction did not appreciably impair the effectiveness of the spray cooling system. That is, analysis performed using current General Electric (GE) loss-of-coolant technique s and heat transfer coefficients derived from stainless-steel-clad bundle tests predicted the maximum cladding temperature to within 20°F.