ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
A. D. Emery, D. B. Scott, J. R. Stewart
Nuclear Technology | Volume 11 | Number 4 | August 1971 | Pages 474-478
Technical Paper | Symposium on Fuel Rod Failure and Its Effect / Fuel | doi.org/10.13182/NT71-A30844
Articles are hosted by Taylor and Francis Online.
A series of simulated transient tests was performed to evaluate the effects of heating rates and pressures on the expansion of Zircaloy-4 fuel tube cladding during a period of overheating similar to that which might occur in certain hypothetical coolant failure accidents. The fuel tubes, which were filled with Al2O3 pellets to simulate UO2, were internally pressurized to various pressures. They were inductively heated in a helium atmosphere, so that the temperature increased with time, for 30 sec or until tube failure occurred. Consequently, the range of heating times considered significant for the postulated class of accidents (from a few seconds to 30 sec) was covered, the time for any particular test being determined by the level of pressurization and the applied heating rate. For the test conditions described, maximum swelling occurred at a heating rate and pressure combination that caused perforation in just 30 sec.