ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jean-M. Paratte, Hiroshi Akie, Rakesh Chawla, Marc Delpech, Jan Leen Kloosterman, Carlo Lombardi, Alessandro Mazzola, Sandro Pelloni, Yannick Pénéliau, Hideki Takano
Nuclear Technology | Volume 130 | Number 2 | May 2000 | Pages 159-176
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT00-A3084
Articles are hosted by Taylor and Francis Online.
An effective way to reduce the large quantities of Pu currently accumulated worldwide would be to use uranium-free fuel in light water reactors (LWRs) so that no new Pu is produced. Such a possibility could be provided by an LWR fuel consisting of Pu in a neutronically inert matrix. It may be necessary to add a burnable absorber or thorium to reduce the reactivity swing during burnup. The methods and data currently used for LWR analyses have not been tested in conjunction with such exotic fuel materials. An international exercise has accordingly been launched to compare the relative performance of different code systems and the accuracy of the basic data. Comparison of the results of cell calculations done with fixed isotopic densities against reference Monte Carlo results shows fairly small but systematic differences in the multiplication factors. A sensitivity analysis done with different basic cross section libraries and the same code system allows one to distinguish between the effects of the codes and those of the databases.The results of the burnup calculations indicate a fair agreement in k both at beginning of life (BOL) and after 1200 days of irradiation [end of life (EOL)] under conditions representative of a present-day pressurized water reactor. At BOL, the fuel temperature coefficients agree fairly well among the different contributions, but unacceptably large differences are observed at EOL. The void coefficients agree well for low voidage, but for void fractions >90%, there are significant effects mostly due to the databases used. The agreement in the calculated boron worths is good.