ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Shirley Dickinson, Howard E. Sims
Nuclear Technology | Volume 129 | Number 3 | March 2000 | Pages 374-386
Technical Paper | Reactor Operations and Control | doi.org/10.13182/NT00-A3068
Articles are hosted by Taylor and Francis Online.
The prediction of iodine behavior in the containment of a pressurized water reactor following a loss-of-coolant accident requires a reliable model of the chemistry of iodine in aqueous solution. The INSPECT model, which has been developed over several years, contains a large number of the relevant chemical reactions of iodine and water radiation chemistry. Since the reaction set was first assembled, new data on rate constants and mechanisms have become available. In addition, the application of the model to various small-scale experiments has revealed problems in the modeling of some reactions, leading to an underprediction of the iodine volatility at high pH, although the experiments have demonstrated that the high-pH volatility remains satisfactorily low.The INSPECT model is described along with the recent modifications that have been made to take account of new data and to improve the modeling where appropriate. The most important of these were (a) changes to the H2O2 - I2 reaction mechanism, (b) the inclusion of an impurity-catalyzed first-order O2- disproportionation reaction, and (c) the treatment of atomic I as a volatile species. These modifications have led to an increase in the predicted iodine volatility under neutral and alkaline conditions. At pH 4.6, where the original model had been found to be satisfactory, the modifications did not result in a significant change in the predicted volatility.The predictions of the revised model are compared with the results of a comprehensive series of experiments, which are described in a separate paper. The model predictions are in generally good agreement with the experiments for the range of conditions studied (pH 4.6 to 9, 10-5 to 10-4 mol/dm3 I-, 0.02 to 0.2 Mrad/h, 25 to 70°C). The results at neutral and high pH show a significant improvement over the previous version of the model, which underestimated the volatility at pH 9 by more than two orders of magnitude.