ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Jérôme M. Verbeke, Jasmina L. Vujic, Ka-Ngo Leung
Nuclear Technology | Volume 129 | Number 2 | February 2000 | Pages 257-278
Technical Paper | Radiation Biology and Medicine | doi.org/10.13182/NT00-A3061
Articles are hosted by Taylor and Francis Online.
A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of boron neutron capture therapy. Two figures-of-merit - the absorbed skin dose and the absorbed tumor dose at a given depth in the brain - are used to measure the neutron beam quality. Based on the results of this study, moderators, reflectors, and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2H(d,n)3He and 3H(d,n)4He down to a suitable energy spectrum. Two different computational models (MCNP and BNCT_RTPE) have been used to study the dose distribution in the brain. With the optimal beam-shaping assembly, a 1-A mixed deuteron/triton beam of energy 150 keV accelerated onto a titanium target leads to a treatment time of 1 h. The dose near the center of the brain obtained with this configuration is >65% higher than the dose from a typical spectrum produced by the Brookhaven Medical Research Reactor and is comparable to the dose obtained by other accelerator-produced neutron beams.