ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Charles O. Slater, Hamilton T. Hunter
Nuclear Technology | Volume 129 | Number 2 | February 2000 | Pages 201-217
Technical Paper | Radiation Protection | doi.org/10.13182/NT00-A3057
Articles are hosted by Taylor and Francis Online.
Newly produced multigroup cross-section libraries require detailed testing to ensure that they are suitable for the applications intended. This requires that the libraries be tested against approved experimental benchmarks and/or well-posed calculational benchmarks. Following this tradition, the recently produced fine-group VITAMIN-B6 library and its derivative BUGLE-96 broad-group library have been tested against calculational and experimental benchmarks that are sensitive to neutrons with energies in the moderate-energy range (10.0 to 20.0 MeV). Iron is prominent in each benchmark as it is in many shielding configurations, and iron cross-section data have posed significant problems in many shielding designs. These benchmarks provide stringent tests for the iron cross sections. Calculated results obtained using the new libraries were compared to measured results or results from other calculations. In some cases, results were in good agreement. In other cases, there were significant discrepancies between results due to deficient measurements in a few comparisons and to method or data deficiencies in other comparisons. It is concluded that there is still need for further measurements and evaluations of the iron cross-section data in the energy region below 6.0 MeV. While fluxes in the moderate-energy range and the associated downscatter sources may be calculated adequately, the inadequate low-energy cross sections can lead to rather large discrepancies in integral quantities such as dose or heating.