ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. Kelm, E. Bohnert
Nuclear Technology | Volume 129 | Number 1 | January 2000 | Pages 123-130
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT00-A3051
Articles are hosted by Taylor and Francis Online.
The radiation chemical reactions in gamma-irradiated 2 to 5.3 mol/l NaCl solutions were mathematically modeled by elementary reactions proceeding in parallel. The calculations showed that if all radiolytic gases could escape from the solution, only three final compounds would be formed proportional to the dose and independent from the dose rate: H2, O2, and chlorate. All other products and intermediates reached a steady-state concentration after ~1 kGy. Within certain limits, the yields of final radiolytic products were determined solely by the primary G values of H2 and H2O2. The results of the corresponding irradiation experiments carried out in glass ampoules up to ~1 MGy were in good agreement with the calculations. The simulation of the radiolysis under the condition that all gaseous products remain dissolved in the solution showed a nearly constant formation rate for hydrogen and oxygen. As opposed to this, the experiments conducted in autoclaves resulted in nearly steady-state conditions for the gases at some 100 kGy at a pressure of ~35 bars. For chlorate, the experiments and the calculation gave a constant concentration of a few micromoles per litre in 5.3 mol/l NaCl solution. A better correspondence between experiments and the simulation was achieved for the gases when the reaction model was extended for interaction of corrosion products from the autoclaves.