ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
C. S. Eberle
Nuclear Technology | Volume 128 | Number 3 | December 1999 | Pages 341-358
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A3036
Articles are hosted by Taylor and Francis Online.
The inorganic and physical chemistry of reactants (e.g., impurities) produced during the reduction of spent light water reactor fuel in a hot cell has been analyzed. Two source terms were identified that influence the composition and quantity of these impurities in the salt matrix. One source comes from the reduction process, which occurs between the fuel and the Li/LiCl salt matrix, and the other from chemical reactions that occur between the hot cell atmosphere and the salt matrix. The spent-fuel-oxide chemistry and energy of formation for the reactants were evaluated. Most of the rare-earth-oxide reactions were not thermodynamically feasible with molten lithium, except when nitrogen was present during the reduction process. A model of the reaction at a vapor-liquid interface was developed and applied to the pilot-scale oxide reduction device design. A predominance diagram for the Li-O-N reactions was constructed to determine the possible reactions during operation of the device, and from these results, the mass accumulation was determined from hot cell conditions.