ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Man Gyun Na
Nuclear Technology | Volume 128 | Number 3 | December 1999 | Pages 327-340
Technical Paper | Reactor Operations and Control | doi.org/10.13182/NT99-A3035
Articles are hosted by Taylor and Francis Online.
A neuro-fuzzy method is used to estimate the departure from nucleate boiling (DNB) protection limit using the measured average temperature and pressure of a reactor core. The neuro-fuzzy system parameters are optimized by two learning methods. A genetic algorithm is used to optimize the antecedent parameters of the neuro-fuzzy inference system, and a least-squares algorithm is used to solve the consequent parameters. Two neuro-fuzzy inference systems are used according to the pressure and temperature regions. The proposed method, which is applied to the Yonggwang 3 and 4 nuclear power plants, has a 6.09% larger thermal margin than the conventional Westinghouse OTT DNB protection logic. This simple algorithm can provide good information for nuclear power plant operation and diagnosis by estimating the DNB protection limit each time step.